Optimization of Process Parameters in Drilling of Smc Composites Using Taguchi Method

نویسندگان

  • Ahmet Can
  • Ali Ünüvar
چکیده

Original scientific paper This paper has presented and discussed machinability in the drilling of SMC (Sheet Mould Compound) A-Class composite materials using Taguchi's DoE method. The thrust forces, surface roughness and push-out peel-up delamination behaviour in drilling process for glass fibre reinforced SMC composites have been evaluated. The experimental results and the contribution ratio of parameters on machinability outputs have been statistically analysed by ANOVA. Analysis of variance shows that drill bit angle is the prominent parameter followed by feed rate and cutting speed that contributes towards output responses. Confirmation experiments performed with the optimum parameter condition levels show a reduction in thrust force by 9,8 %, surface roughness by 33,3 %, push-out delamination by 2,5 % and peel-up delamination by 1,38 %. A detailed deformation analysis was investigated for SMC composites. For the empirical modelling of machinability, outputs of SMC composites can be modelled with the quadratic polynomial regression model in a higher range of accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple performance characteristics optimization for Al 7075 on electric discharge drilling by Taguchi grey relational theory

Electric discharge drill machine (EDDM) is a spark erosion process to produce micro-holes in conductive materials. This process is widely used in aerospace, medical, dental and automobile industries. As for the performance evaluation of the electric discharge drilling machine, it is very necessary to study the process parameters of machine tool. In this research paper, a brass rod 2 mm diameter...

متن کامل

Optimization on Delamination of Cutting Parameter during Drilling on Gfrp Plastics Based on Taguchi Method

Drilling of glass fibre reinforced plastic (GFRP) composite is different from metallic materials due to its mechanical properties. The drilling of this material may generate delamination of drilled holes on workpiece. The purpose of this paper is to investigate the influence of the cutting parameters, such as cutting speed and feed rate, point angle of drill and material thickness on delaminati...

متن کامل

Determination of optimum parameters on delamination in drilling of GFRP composites by Taguchi method

Drilling is one of the important machining processes in hole making operations. Delamination is a vital problem during any drilling operation. It causes structural integrity reduction and poor assembly tolerance as well as potential for long-term performance deterioration. As a result, drilling of any material requires dimensional stability and interface quality. In this study, glass fibre rein...

متن کامل

Investigation of Effective Parameters on Densification of ZrB2-SiC Based Composites Using Taguchi Method

Abstract The main goal of this study is optimization of densification of ZrB2-SiC composites reinforced with chopped Cf prepared by SPS. Taguchi method is employed as statistical design of experiment (DOE) to optimize densification parameters including SiC, Cf, MoSi2, HfB2 and ZrC content, milling time of Cf and SPS parameters such as temperature, time and pressure. Each of these factors ...

متن کامل

Optimization of Drilling Parameters on Delamination Based on Taguchi Method in Drilling of Natural Fiber Reinforced (Agave) Composite

Agave is the one of the abundantly available plant in India. The wide application of agave reinforced composite plate necessitate the joining of two plates together. For making such joint drilling of those plates is required. Drilling of natural fiber composites is different from the other metals because of its mechanical properties. The major problem faced in drilling of theses natural fiber c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017